Stereochemical Course of Dehydration Catalysed by the Yeast Fatty Acid Synthetase

By BRIAN SEDGWICK,* CAROLINE MORRIS, and SIDNEY J. FRENCH

(Shell Research Limited, Biosciences Laboratory, Sittingbourne Research Centre, Sittingbourne, Kent ME9 8AG)

Summary Dehydration of the (3R)-hydroxyalkyl S-thioester (1) by yeast fatty acid synthetase to give the trans-2-enoyl derivative (2) occurs by means of a synelimination of the elements of water.

THE biosynthesis *de novo* of long-chain saturated fatty acids from acetyl-CoA and malonyl-CoA involves a cyclic series of condensation-reduction-dehydration-reduction reactions that result in the lengthening of the acyl-chain by one $-CH_2CH_2$ - unit at each turn of the cycle.¹ Reduction of the 3-ketoacyl product of the condensation is stereospecific and gives rise to the (3R)-hydroxyacyl intermediate^{2,3} which in turn loses water in the dehydration to give exclusively the *trans*-2-enoyl derivative.² Previous investigations in this laboratory^{4,5} have established the existence of an overall stereospecificity in the reactions catalysed by the fatty acid synthetase. A recent paper⁶ has provided further evidence in support of the proposed concerted displacement mechanism^{1,7} for the condensation reaction. Acceptance of this mechanism of condensation implicates the dehydration reaction as the point at which the stereospecific elimination of a proton (originally present as one of the malonate methylene hydrogens in malonyl-CoA) must occur.⁵ It is essential for the further evaluation of our earlier results⁵ to know whether the pro-2Rhydrogen (anti-elimination) or the pro-2S hydrogen (synelimination) is eventually removed with the (3R)-hydroxygroup during the dehydration.

Stereospecifically labelled (2R,3R) + (2S,3S)-3-hydroxy[2- $^{3}H_{1}$]butyric acid was synthesised by treating (RS)-2,3epoxybutyric acid⁸ with tritiated lithium borohydride,⁹ a reaction that leads to a trans-opening of the epoxide ring.¹⁰ The doubly racemic (2RS, 3RS)-3-hydroxy $[2-^{3}H_{1}]$ butyric acid was also prepared, essentially according to a published procedure.¹¹ Following the addition of (3RS)-3-hydroxy-[3-14C]butyric acid, the two specimens were purified¹² prior to conversion via the mixed anhydride¹³ into the enzymically active N-acetylcysteamine thioesters.^{2,14} These compounds were then used as substrates for assay¹⁴ of the dehydrase activity of the fatty acid synthetase purified from bakers yeast (Saccharomyces cerevisiae).14 Earlier investigations have shown that only the D- or (3R)-(-)hydroxyacyl intermediates are involved in fatty acid biosynthesis in yeast² and pigeon liver.³ Thus, in the present studies, the presence of labelled L- or (3S)-(+)-hydroxybutyryl molecules in the substrate is of no consequence, as these are not metabolised by the purified synthetase used in this work.²

Following incubation with the synthetase, portions of water from the medium were flash distilled (20 °C; reduced pressure) and the tritium content of the distillate was determined. The residual material was extracted into chloroform and the crotonyl-N-acetyl-cysteamine product (2) was separated from unchanged 3-hydroxybutyryl-N-acetylcysteamine substrate (1) by column chromatography on silicic acid, followed by recrystallization to constant specific activity and isotope ratio with carrier material.

- ¹ F. Lynen, Biochem. J., 1967, **102**, 381. ² F. Lynen, Fed. Proc., 1961, **20**, 941.
- ³ S. J. Wakil and R. Bressler, J. Biol. Chem., 1962, 237, 687.
- ⁴ B. Sedgwick and J. W. Cornforth, European J. Biochem., 1977, 75, 465.
 ⁵ B. Sedgwick, J. W. Cornforth, S. J. French, R. T. Gray, E. Kelstrup and P. Willadsen, European J. Biochem., 1977, 75, 481.
- ⁶ K.-I. Arnstadt, G. Schindlbeck, and F. Lynen, *European J. Biochem.*, 1975, 55, 561.
 ⁷ F. Lynen, *Biochem. J.*, 1970, 117, 47P.
 ⁸ G. B. Payne and P. H. Williams, *J. Org. Chem.*, 1959, 24, 54.
 ⁹ R. H. Cornforth, *Tetrahedron*, 1970, 26, 4635.
 ¹⁰ R. H. Cornforth *J. Chem. Soc.* (2000) 0000

- ¹⁰ R. H. Cornforth, J. Chem. Soc. (C), 1970, 928.
- ¹¹ P. Willadsen and H. Eggerer, European J. Biochem., 1975, 54, 247.
- ¹² T. Seki, J. Chromatog., 1966, 22, 498.
 ¹³ L. R. Kass and D. J. H. Brock, Methods Enzymol., 1969, 14, 696.
- ¹⁴ F. Lynen, Methods Enzymol., 1969, 14, 17.

Scheme

The conversion of the non-specifically tritiated (2RS,3RS)-3-hydroxy[3-14C,2-3H1]butyryl substrate (3H/14C =17.5) into the corresponding trans-2-enoyl product (crotonyl-N-acetylcysteamine) resulted, as expected, in the release of approximately one half (51%) of the tritium initially present in the transformed molecules. The isotope ratio was 9.03, a decrease of 48% relative to the ratio in the substrate. The stereospecifically labelled (2R,3R)+ (2S,3S)-3-hydroxy[3-¹⁴C,2-³H₁]butyryl substrate (³H/¹⁴C = 5.16), on the other hand, lost only 6.5% of its tritium, the isotope ratio in the product being 4.76, a decrease of 7.8%. Bearing in mind that only the (3R) molecules were involved in this conversion, and that the tritium in this stereospecifically labelled substrate was in the pro-2R position, it follows that for the tritium to be retained in the product the dehydration must involve the removal of the pro-2S hydrogen with the (3R)-hydroxy-group, a syn-elimination (see Scheme). Assignment of this stereochemistry for dehydration, together with our previous findings that tritium is retained preferentially from (2S)-[2-3H1]malonyl substrate,5 enables us to deduce that the condensation reaction in fatty acid biosynthesis proceeds with inversion of configuration at carbon-2 of malonate.

(Received, 26th September 1977; Com. 1000.)